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Product distribution theory is a new collective intelligence-based framework for
analyzing and controlling distributed systems. Its usefulness in distributed stochastic
optimization is illustrated here through an airline fleet assignment problem. This
problem involves the allocation of aircraft to a set of flights legs in order to meet
passenger demand, while satisfying a variety of linear and non-linear constraints. Over
the course of the day, the routing of each aircraft is determined in order to minimize
the number of required flights for a given fleet. The associated flow continuity and
aircraft count constraints have led researchers to focus on obtaining quasi-optimal
solutions, especially at larger scales. In this paper, the authors propose the application
of this new stochastic optimization algorithm to a non-linear objective “cold start”
fleet assignment problem. Results show that the optimizer can successfully solve such
highly-constrained problems (130 variables, 184 constraints).

Introduction

SCHEDULE development, a crucial aspect of profitable
airline management, involves many steps, including

schedule design, fleet assignment, aircraft routing, and crew
pairing.1 In this project, we assume that schedule design
has been finalized; the focus is on fleet assignment, that is
the assignment of available aircraft to the scheduled flights,
and on aircraft routing, the sequence of flights to be flown by
each aircraft throughout the day (Figure 1). Typical fleet
assignment objectives include minimizing assignment cost
or maximizing the profit from each flight. In our case, the
objective is to meet the passenger demand throughout the
day with the lowest total landing and takeoff (LTO) costs.

Fleet assignment problems can be classified as either
“warm start”, in which case an existing assignment is used
as a starting point, or “cold start”, in which only the fleet
size, aircraft types, and passenger demand are known.2

Fleet assignment and aircraft routing problems have been
solved using various optimization methods, including integer
linear programming,3,4 neighborhood search,5 and genetic
algorithms.6

An alternate approach pursued here is to distribute the
optimization among agents that represent, for example,
members of the fleet or the airports in the network. Formu-
lating the problem as a distributed stochastic optimization
allows for the application of techniques from machine learn-
ing, statistics, multi-agent systems, and game theory. The
current work leverages these fields by applying a Collective
Intelligence (COIN) technique, Product Distribution (PD)
theory, to a sample fleet assignment problem. Typically
in stochastic optimization approaches probability distribu-
tions are used to help search for a point in the variable
space which optimizes the objective function. In contrast,
in the PD approach the search is for a probability distribu-
tion across the variable space that optimizes an associated
Lagrangian. Since the probability distribution is a vector
in a Euclidean space, the search can be done via gradient
based methods even if the variable space is categorical. Sim-
ilar techniques have been successfully applied to a variety of
distributed optimization problems including network rout-
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Fig. 2 The 9-airport, 20-arc problem.

ing, computing resource allocation, and data collection by
autonomous rovers.7–9

The next section of the paper details the formulation of
the optimization problem. This is followed by a description
of the COIN and PD theory framework. Finally, results
from an example fleet assignment problem are presented.
These results validate the predictions of this theory, and
indicate its usefulness as a general purpose technique for
distributed solutions of constrained optimization problems.

Problem Statement
The objective is to determine the aircraft routing and resi-

dent fleet size at each airport that minimizes the landing and
takeoff fees levied by airports while meeting demand. The
9-airport, 20-flight directed arc sample problem (Figure 2)
is used to demonstrate the performance of the approach.
The passenger demand on each arc is given as a function of
time (determined as part of the schedule design). The day
is split into six 4-hour segments. It is assumed that each
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Pax Capacity w Cost Factor F (w)
100 1.0
200 1.5
300 2.0

Table 1 LTO cost factor as a function of aircraft pas-
senger capacity.

arc can be flown and the aircraft turned around in one time
segment. The optimization problem is as follows:

Minimize: Total LTO Fees
Variables: Number of aircraft on each arc

Resident fleet at each airport
Airplane passenger capacity

Constraints: Passenger demand
Assignment continuity
Resident fleet conservation
Total fleet size

The three types of variables are: ui,j , the number of air-
craft assigned to flight arc i at time segment j, vk, the
number of resident aircraft at airport k, and w, the pas-
senger capacity of the airplane. The resident fleet is the
number of airplanes at each airport at the start and end of
the day, which must be the same to repeat the schedule the
next day. The allowable ranges for the variables are :

0 ≤ ui,j ≤ 12

0 ≤ vk ≤ 30

w = 100, 200, 300

The total daily LTO cost is a function of F (w) (see Ta-
ble 1) and the number of segments flown. The non-linear
objective function can be written as:

min
ui,j ,vk,w

(
G = F (w)

∑
i,j

ui,j

)

There are 20 arcs and 6 time segments in this problem,
which, with 9 airports and 1 aircraft type, results in a total
of 130 variables. Constraints are required to ensure that
passenger demand Di,j is met in full by capacity Ci,j for
each arc, at each time segment. There are 20 arcs and 6 time
segments, for a total of 120 passenger demand constraints.
For these non-linear constraints to be satisfied:

−Ci,j + Di,j ≤ 0

with:

Ci,j = w · ui,j

While the framework supports multiple aircraft models, in
this example problem the fleet is composed of a single air-
craft type, for which the passenger capacity is a variable.
Assignment continuity ensures that an airplane can only be
assigned to an arc if an airplane is available at the origi-
nating airport. With 9 airports and 6 time segments, 54
continuity constraints are included. Defining Sk,j as the
state of the fleet at airport k at the beginning of time incre-
ment j, we require:

−Sk,j ≤ 0

where:

Sk,j = Sk,j−1 +
∑

i

Mk,i · ui,j +
∑

i

Nk,i · ui,j−1

The M matrix is used to tally outbound aircraft for each
airport during a time segment. Likewise, N is used to de-
termine the inbound aircraft to be added to an airport pool.

For example, for our 9-city, 20-arc case:

M =

AB AC . . . BA . . . IE
A -1 -1 . . . 0 . . . 0
B 0 0 . . . -1 . . . 0
C 0 0 . . . 0 . . . 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.

I 0 0 . . . 0 . . . -1

N =

AB AC . . . BA . . . IE
A 0 0 . . . 1 . . . 0
B 1 0 . . . 0 . . . 0
C 0 0 . . . 0 . . . 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.

I 0 0 . . . 0 . . . 0

The resident fleet size SIk at each airport k must equal
the number of airplanes SFk at the end of the day so the
schedule can be restarted the following day. In equation
form, we require:

−SIk + SFk ≤ 0

with:
SIk = vk

SFk =
∑

i

Nk,i · ui,jfinal

The airports in this sample problem contribute 9 resident
fleet constraints. Finally, the total fleet size F is enforced
using: ∑

k

SIk − F ≤ 0

This results in a total of 184 constraints.

Collective Intelligence and Product
Distribution Theory

Collective Intelligence (COIN) is a framework for design-
ing a collective, defined as a group of agents with a specified
world utility or system-level objective. In the case of the
fleet assignment problem, the agents match the two types
of variables: the number of airplanes assigned to each route
for each time segment, and the size of the resident fleet at
each airport. The world utility for this problem is the ob-
jective described above: total LTO fees.

The COIN solution process consists of the agents select-
ing actions (a value from the variable space) and receiving
rewards based upon their private utility functions. These
rewards are then used by the agents to determine their next
choice of action. The process reaches equilibrium when the
agents can no longer improve their rewards by changing
actions. Product Distribution (PD) theory formalizes and
substantially extends the COIN framework.10–12 In particu-
lar PD theory handles constraints, a necessity for problems
such as fleet assignment. The core insight of PD theory is to
concentrate on how the agents update the probability distri-
butions across their possible actions rather than specifically
on the joint action generated by sampling those distribu-
tions.

PD theory can be viewed as the information-theoretic ex-
tension of conventional full-rationality game theory to the
case of bounded rational agents. Information theory shows
that the equilibrium of a game played by bounded rational
agents is the optimizer of a Lagrangian of the probabil-
ity distribution of the agents’ joint-moves. In any game,
bounded rational or otherwise, the agents are independent,
with each agent i choosing its move xi at any instant by sam-
pling its probability distribution (mixed strategy) at that
instant, qi(xi). Accordingly, the distribution of the joint-
moves is a product distribution, P (x) =

∏
i qi(xi). In this

representation, all coupling between the agents occurs in-
directly; it is the separate distributions of the agents {qi}
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that are coupled, while the actual moves of the agents are
independent. As a result the optimization of the Lagrangian
can be done in a completely distributed manner.

When constraints are included, the bounded rational equi-
librium optimizes the expected value of the world utility
subject to those constraints. Updating the Lagrange pa-
rameters weighting the constraints focuses the agents more
and more on the optimal joint pure strategy.

This approach provides a broadly applicable way to cast
any constrained optimization problem as the equilibrating
process of a multi-agent system, together with an efficient
method for that equilibrating process.

The next section reviews the game-theoretic motivation
of PD theory. This is followed by the details of the resulting
distributed constrained optimization algorithm used to solve
the fleet assignment problem.

Bounded Rational Game Theory

In noncooperative game theory one has a set of N players.
Each player i has its own set of allowed pure strategies. A
mixed strategy is a distribution qi(xi) over player i’s possible
pure strategies.

Each player i also has a private utility function gi that
maps the pure strategies adopted by all N of the players
into the real numbers. Given mixed strategies of all the
players, the expected utility of player i is:

E(gi) =

∫
dx

∏
j

qj(xj)gi(x)

In a Nash equilibrium, every player adopts the mixed
strategy that maximizes its expected utility, given the mixed
strategies of the other players. Nash equilibria require the
assumption of full rationality, that is, every player i can
calculate the strategies of the other players and its own as-
sociated optimal distribution.

In the absence of full rationality, the equilibrium is de-
termined based on the information available to the players.
Shannon realized that there is a unique real-valued quan-
tification of the amount of syntactic information in a distri-
bution P (y). This amount of information is the negative of
the Shannon entropy of that distribution:

S(P ) = −
∫

dy P (y) ln[P (y)]

Hence, the distribution with minimal information is the
one that does not distinguish at all between the various y,
i.e., the uniform distribution. Conversely, the most infor-
mative distribution is the one that specifies a single possible
y. Given some incomplete prior knowledge about a distribu-
tion P (y), this says that the estimate P (y) should contain
the minimal amount of extra information beyond that al-
ready contained in the prior knowledge about P (y). This
approach is called the maximum entropy (maxent) princi-
ple and it has proven useful in domains ranging from signal
processing to supervised learning.13

Now consider an external observer of a game attempting
to determine the equilibrium, that is the joint strategy that
will be followed by real-world players of the game. Assume
that the observer is provided with a set of expected utilities
for the players. The best estimate of the joint distribution q
that generated those expected utility values, by the maxent
principle, is the distribution with maximal entropy, subject
to those expectation values.

To formalize this approach, we assume a finite number of
players and of possible strategies for each player. Also, to
agree with convention, it is necessary to flip the sign of each
gi so that the associated player i wants to minimize that
function rather than maximize it.

For prior knowledge consisting of the set of expected
utilities of the players {εi}, the maxent estimate of the as-

sociated q is given by the minimizer of the Lagrangian:

L(q) ≡
∑

i

βi[Eq(gi) − εi] − S(q) (1)

=
∑

i

βi

[∫
dx

∏
j

qj(xj)gi(x) − εi

]
− S(q) (2)

where the subscript on the expectation value indicates that
it is evaluated under distribution q, and the {βi} are “inverse
temperatures” βi = 1/Ti implicitly set by the constraints on
the expected utilities.

The mixed strategies minimizing the Lagrangian are re-
lated to each other via

qi(xi) ∝ e
−Eq(i) [G|xi] (3)

where the overall proportionality constant for each i is set
by normalization, and

G(x) ≡
∑

i

βigi(x)

The subscript q(i) on the expectation value indicates that
it is evaluated according the distribution

∏
j �=i qj . The ex-

pectation is conditioned on player i making move xi. In
Eq. (3) the probability of player i choosing pure strategy xi

depends on the effect of that choice on the utilities of the
other players. This reflects the fact that the prior knowledge
concerns all the players equally.

Focusing on the behavior of player i, consider the case of
maximal prior knowledge. Here the actual joint-strategy of
the players and therefore all of their expected utilities are
known. For this case, trivially, the maxent principle says
the “estimate” q is that joint-strategy (it being the q with
maximal entropy that is consistent with our prior knowl-
edge). The same conclusion holds if our prior knowledge
also includes the expected utility of player i.

Removing player i’s strategy from this maximal prior
knowledge leaves the mixed strategies of all players other
than i, together with player i’s expected utility. Now the
prior knowledge of the other players’ mixed strategies can
be directly incorporated into a maxent Lagrangian for each
player,

Li(qi) ≡ βi[εi − E(gi)] − Si(qi)

= βi[εi −
∫

dx
∏

j

qj(xj)gi(x)] − Si(qi)

The solution is a set of coupled Boltzmann distributions:

qi(xi) ∝ e
−βiEq(i) [gi|xi]. (4)

Following Nash, Brouwer’s fixed point theorem can be used
to establish that for any non-negative values {β}, there must
exist at least one product distribution given by the product
of these Boltzmann distributions (one term in the product
for each i).

The first term in Li is minimized by a perfectly ratio-
nal player. The second term is minimized by a perfectly
irrational player, i.e., by a perfectly uniform mixed strategy
qi. So βi in the maxent Lagrangian explicitly specifies the
balance between the rational and irrational behavior of the
player. In the limit, β → ∞, the set of q that simultane-
ously minimize the Lagrangians is the same as the set of
delta functions about the Nash equilibria of the game. The
same is true for Eq. (3). In fact, Eq. (3) is just a special case
of Eq. (4), where all player’s share the same private utility,
G. Such games are known as team games. This relationship
reflects the fact that for this case, the difference between the
maxent Lagrangian and the one in Eq. (2) is independent of
qi. Due to this relationship, the guarantee of the existence
of a solution to the set of maxent Lagrangians implies the
existence of a solution of the form Eq. (3).
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Optimization Approach

Given that the agents in a multi-agent system are
bounded rational, if they play a team game with world
utility G, their equilibrium will be the optimizer of G. Fur-
thermore, if constraints are included, the equilibrium will be
the optimizer of G subject to the constraints. The equilib-
rium can be found by minimizing the Lagrangian in Eq. (2)
where the prior information set is empty, e.g. for all i,
εi = {∅}.

Specifically for the unconstrained optimization problem,

min
�x

G(�x)

assume each agent sets one component of �x as that agent’s
action. The Lagrangian Li(qi) for each agent as a function
of the probability distribution across its actions is,

Li(qi) = E[G(xi, x(i))] − T S(qi)

=
∑
xi

qi(xi)E[G(xi, x(i))|xi] − T S(qi)

where G is the world utility (system objective) which de-
pends upon the action of agent i, xi, and the actions of
the other agents, x(i). The expectation E[G(xi, x(i))|xi] is
evaluated according to the distributions of the agents other
than i:

P (x(i)) =
∏
j �=i

qj(xj)

The entropy S is given by:

S(qi) = −
∑
xj

qi(xj) ln qi(xj)

Each agent then addresses the following local optimization
problem,

min
qi

Li(qi)

s.t.
∑
xi

qi(xi) = 1, qi(xi) ≥ 0, ∀xi

The Lagrangian is composed of two terms weighted by
the temperature T : the expected reward across i’s actions,
and the entropy associated with the probability distribu-
tion across i’s actions. During the minimization of the
Lagrangian, the temperature provides the means to trade-off
exploitation of good actions (low temperature) with explo-
ration of other possible actions (high temperature).

The minimization of the Lagrangian is amenable to solu-
tion using gradient descent or Newton updating since both
the gradient and the Hessian are obtained in closed form.
Using Newton updating and enforcing the constraint on to-
tal probability, the following update rule is obtained:

qi(xi) → qi(xi) − αqi(xi)×{
E[G|xi] − E[G]

T
+ S(qi) + ln qi(xi)

}
(5)

where α plays the role of a step size. The step size is required
since the expectations result from the current probability
distributions of all the agents.

Constraints are included by augmenting the world utility
with Lagrange multipliers, λj , and the constraint functions,
cj(�x),

G(�x) → G(�x) +
∑

j

λjcj(�x)

where the cj(�x) are non-negative. The update rule for the
Lagrange multipliers is found by taking the derivative of
the augmented Lagrangian with respect to each Lagrange
multiplier, giving:

λj → λj + ηE[cj(�x)] (6)

where η is a separate step size.

Fig. 3 Algorithm Flow Chart.

Role of Private Utilities

Performing the update involves a separate conditional
expected utility for each agent. These are estimated ei-
ther exactly if a closed form expression is available or with
Monte-Carlo sampling if no simple closed form exists. In
Monte Carlo sampling the agents repeatedly and jointly
IID (identically and independently distributed) sample their
probability distributions to generate joint moves, and the
associated utility values are recorded. Since accurate esti-
mates usually require extensive sampling, the G occurring
in each agent i’s update rule can be replaced with a private
utility gi chosen to ensure that the Monte Carlo estimation
of E(gi|xi) has both low bias (with respect to estimating
E(G|xi) and low variance.14

Intuitively bias represents the alignment between the pri-
vate utility and world utility. With zero bias, updates which
reduce the private utility are guaranteed to also reduce the
world utility. It is also desirable for an agent to distinguish
its contribution from that of the other agents: variance mea-
sures this sensitivity. With low variance, the agents can
perform the individual optimizations accurately without a
large number of Monte-Carlo samples.

Two private utilities were selected for use in the fleet as-
signment problem, Team Game (TG) and Wonderful Life
Utility (WLU). These are defined as:

gTGi(xi, x(i)) = G(xi, x(i))

gWLUi(xi, x(i)) = G(xi, x(i)) − G(CLi, x(i))

For the team game, the local utility is simply the world
utility. For WLU, the local utility is the world utility minus
the world utility with the agent action “clamped” by the
value CLi. Here the clamping value fixes the agent action
to its lowest probability action. Both of these utilities have
zero bias. However, due to the subtracted term, WLU has
much lower variance than TG.
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Time Segment
Arc 1 2 3 4 5 6
AB 100 200 200 200 100 100
AC 200 100 100 100 200 200
AD 200 200 200 200 200 200
AE 400 600 800 800 600 400
AI 100 100 200 100 100 100
BA 100 100 200 200 200 100
CA 200 200 100 100 100 200
DA 200 200 200 200 200 200
DE 200 200 200 200 200 200
EA 400 600 800 800 600 400
ED 200 200 200 200 200 200
EF 100 0 100 100 100 100
EG 100 100 100 100 100 100
EH 200 200 200 200 200 200
EI 100 100 100 100 100 100
FE 100 0 100 100 100 100
GE 100 100 100 100 100 100
HE 200 200 200 200 200 200
IA 100 100 100 100 100 100
IE 100 100 100 100 100 100

Table 2 Passenger demand for each arc as a function of
time.

Detailed Algorithm

The algorithm used to solve the fleet assignment and
aircraft routing problem presented here is illustrated in Fig-
ure 3. The initialization step involves setting each agent’s
probabilities to uniform over its possible moves. The La-
grange multipliers for all the constraints are initialized to
zero. A loop is then repeated until convergence. Within the
loop the Monte-Carlo sampling is performed, after which
the private utilities for each agent are computed. The num-
ber of function evaluations required depends on the private
utility. Team Game requires one function evaluation for
each Monte-Carlo sample, while the generic version of the
Wonderful Life utility requires as many function evaluations
as there are variables. Often the structure of the objective
function and constraints can be exploited in the evaluation
of WLU to avoid unnecessary function calls.7,9 In order
to demonstrate the performance of the algorithm without
any such preprocessing, the present work makes no effort
to exploit the structure of the fleet assignment formulation
described above. Due to the discrete nature of the agent
moves, the regression step involves simply averaging the pri-
vate utility received for each agent’s move over the Monte
Carlo samples. Data aging is used within the regression to
preserve information from previous iterations. The previous
private utility estimates are weighted by a factor γ compared
with the new samples during the regression. The probabili-
ties and Lagrange multipliers are then updated according to
Eqs. (5) and (6), respectively. Eq. (5) automatically enforces
the constraint on total probability but does not prevent neg-
ative probabilities. To prevent negative probabilities the
probability update is modified by setting all components
that would be negative to a small positive value, typically
1× 10−6, and then re-normalizing. Finally, the convergence
criterion is checked, in this case a combination of the norms
of the probability and Lagrange multiplier updates:

U0.5
p + U0.5

λ ≤ 1 × 10−4

with:

Up =
∑

i

∑
xi

(qi(xi) − qi(xi)prev)2

Uλ =
∑

j

(
λj − λjprev

)2

If the criterion is not met, the sampling and update process
is repeated.

Time Segment
Arc 1 2 3 4 5 6
AB 1 2 2 2 1 1
AC 2 1 1 1 2 2
AD 2 2 2 2 2 2
AE 4 6 8 8 6 4
AI 1 1 2 1 1 1
BA 1 1 2 2 2 1
CA 2 2 1 1 1 2
DA 2 2 2 2 2 2
DE 2 2 2 2 2 2
EA 4 6 8 8 6 4
ED 2 2 2 2 2 2
EF 1 0 1 1 1 1
EG 1 1 1 1 1 1
EH 2 2 2 2 2 2
EI 1 1 1 1 1 1
FE 1 0 1 1 1 1
GE 1 1 1 1 1 1
HE 2 2 2 2 2 2
IA 1 1 1 1 1 2
IE 1 1 1 1 1 1

Table 3 Number of flights assigned to each arc at each
time segment.

Fig. 4 The resident fleet at each airport required to
optimally solve the problem.

Results
Linearized Constraints and Objective Function

For assessment purposes, both the PD framework and
AMPL-CPLEX15,16 were applied to a linearized version of
the 9-city, 20-arc fleet assignment problem (CPLEX does
not support non-linear constraints).

In this case, the passenger capacity w was fixed to 100.
The linear objective becomes:

min
ui,j ,vk

(
G = 100

∑
i,j

ui,j

)

with the total fleet passenger capacity:

Ci,j = 100 · ui,j

The problem features a time-dependant, asymmetric de-
mand structure as shown in Table 2.

To enhance the convergence speed, the objective was
squared, effectively dramatizing the topology of the prob-
lem:

min
ui,j ,vk

(
G = (100

∑
i,j

ui,j)
2

)

Both optimization tools reached global minimum with a
fleet size of 43 aircraft: 228 flights are required, yielding
an objective of 51,984. The number of flights assigned to
each route is shown in Table 3, and the resident fleet size at
each airport is illustrated in Figure 4. In order to capture
the stochastic nature of the approach, the optimization was
repeated 20 times. The figures show averages and ranges
for the minimum objective in each block of Monte-Carlo
samples. Each iteration is an update to the probability dis-
tributions using a single block of Monte-Carlo samples.

The importance of selecting the appropriate private utility
is shown in Figure 5. For each utility, the best temperature



6

0 50 100 150 200

2

4

6

8

10

12

14

x 10
5

Iterations

O
bj

ec
tiv

e
TG
WLU

Fig. 5 Comparison of convergence with two private util-
ities (200 Monte Carlo samples).
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Fig. 6 Increasing sampling speeds convergence (Tem-
perature = 10, WLU, 20 runs).

was selected, 10 for WLU and 1000 for TG. The results show
that WLU performs considerably better than Team Game.
This is consistent with previous applications of COIN.7,9

As illustrated in Figure 6, the number of Monte Carlo
samples between updates affects the rate of convergence. In
almost all cases, 50 samples were not sufficient to find the
minimum objective. With 200 samples, the minimum was
found in 18 of 20 cases. Increasing the number of samples
to 1000 resulted in all cases converging to the minimum.

Similarly, selecting the correct temperature influences the
optimization process (Figure 7). A low temperature (T=1)
did not allow enough exploration, while a high temperature
(T=100) slowed convergence. For this example, a moderate
temperature (T=10) offered the best trade-off between ex-
ploration and exploitation. In particular, the case with the
lowest temperature rapidly converged to an infeasible mini-
mum. The objective then grew as the Lagrange multipliers
increased. The optimizer, at this low temperature, is unable
to explore other regions of the design space.

Non-Linear Constraints and Objective Function

Following the above linearized study, the methodology
was applied to the fully non-linear problem: the PD frame-
work’s ambivalence towards constraint and objective types
makes it ideal in this case. The PD optimizer obtains a
solution that is very close to optimum: it selects the cor-
rect aircraft, with 200 passenger capacity (resulting in an
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Fig. 7 Effects of temperature on convergence (200
Monte Carlo samples, WLU, 20 runs).
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Fig. 8 Comparison of optimum for the linearized (fixed
airplane capacity) and non-linear (variable airplane ca-
pacity) problems.

LTO cost factor of 1.5) and requires a total of 146 flights
to meet demand. The objective is therefore 47,961. Fig-
ure 8 compares the convergence rate of the variable aircraft
type problem with the performance of the fixed aircraft type
problem – while the convergence takes slightly more itera-
tions, no changes in the parameter settings were been made.
For comparison purposes, running AMPL-CPLEX with a
fixed passenger capacity of 200 resulted in a solution with
142 flights required, for an objective of 45,369. When the
PD framework is run with fixed aircraft capacity, this same
result is obtained.

Conclusion
A collective-intelligence framework was successfully ap-

plied to a sample fleet assignment problem and yielded glob-
ally optimum solutions. With the basic framework proven
to handle highly-constrained design spaces with non-linear
constraints and objectives, a fleet assignment problem of
more realistic size can be approached. The function evalu-
ation was carefully formulated to allow for scalability and
automation, and features such as transfer passengers, en-
vironmental considerations, and maintenance visit require-
ments can be implemented. Exploring other types of agents
(perhaps airports or arcs) and developing problem-specific
local utilities may also yield faster convergence rates and
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require fewer Monte Carlo samples.
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